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A New Rule for Estimating Rifling Twist
An Aid to Choosing Bullets and Rifles

by Don Miller  

I. Introduction 

For a bullet to fly point-forward, it must spin fast enough to be stable.  For stability, the 
"gyroscopic stability factor" s, which depends on the spin rate, must be greater than 1.0.  Because 
the spin in flight declines considerably more slowly than the forward velocity, the bullet's stability 
factor increases as it flies downrange, and it actually becomes more stable.  Consequently, the 
stability factor at the muzzle is the most significant.  Since the spin rate at the muzzle depends on 
rifling twist, twist is an important part of the stability factor.

It is well known that longer bullets need a faster rifling twist to be stable.  This concerns 
shooters wanting to choose bullets for their rifles or to choose a rifle to use particular bullets. 
Therefore, such concerns raise many interesting questions.  What level of stability is "safe"?  What 
twist is enough for a safe stability?  If a twist has a certain stability factor s, what is the stability 
factor for a different twist?  What about too fast a twist (overstability)?  What twist do I need for a 
long (heavy) bullet?  If my rifle's twist is OK for a standard jacketed bullet, will it be OK for a 
bronze bullet of the same weight?  How is the stability affected by muzzle velocity v, atmospheric 
air temperature T and pressure P, or altitude h?

The accurate answers to these questions require experimental data available only for a small 
number of military bullets and shells, but simply not available for the hundreds of sporting bullets.  

What do we do in this situation?  We use semi-empirical correlations.  They aren't perfect, 
but can be quite good guides and get us into the ballpark.

Greenhill's old, simple rule is 150=lt , where t is the twist in calibers/turn and l is bullet 
length in calibers.  Derived in 1879 for a football-shaped bullet at subsonic velocities [M04], it 
estimates a "safe" twist in terms of bullet length alone and assumes a density of 10.9 g/cm3.  It 
works much better than expected at modern velocities, with actual stability factors of 1.5-2.0 at 
2800 ft/sec.  However, it is not as good for Black Powder velocities.

There are also modern "fast design" programs that either estimate twist directly or are based 
on estimating twist from the "overturning moment" CMα .  Public domain examples are Bob 
McCoy's McGyro and Intlift.  However, besides the length, they typically require detailed and hard-
to-get knowledge of bullet shape, moments of inertia, and the center of gravity.  Unfortunately, they 
give conflicting results, and the conflicts are worse below about 1500 ft/sec.

While any discussion of twist rules necessarily requires formulas, using them just needs 
plugging numbers into them, as we will see in examples.

II.  The New Rule for Twist and Stability Factor

I propose a new semi-empirical rule for estimating the necessary twist for a safe stability 
factor at standard conditions (Army Standard Metro) and Mach number M=2.5 (a velocity of 2800 
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ft/sec), or conversely, estimating the stability factor from the twist.  This rule doe not depend on 
shape but includes one more parameter than Greenhill's Rule, the easily obtained weight of the 
bullet m.  It is based on correlating experimental bullet data obtained at the US Army Research 
Laboratory (formerly Ballistic Research Laboratory).  I include approximate corrections for velocity 
(Mach number), as well as adjustments for different air temperatures and barometric pressures.

This simple new rule is better and more general than the Greenhill formula.  If m is the 
bullet weight in grains, s the gyroscopic stability factor (dimensionless), d the bullet diameter in 
inches, l the bullet length in calibers, and t the twist in calibers per turn, then our new twist rule for 
the square of the twist is
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where t=T/d (T is the twist in inches per turn) and l=L/d (L is the bullet length in inches.)

To get the stability factor s for a known twist, bullet weight, and length, eq A becomes
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Note that the stability factor is inversely proportional to the square of the twist.  Therefore, the 
twist itself is just the square root of eq A.
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For a given bullet and gun, eq A or B relates a different twist t2 or stability factor s2 to the 
original ones t1 and s1 by
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Eq A-C have the bullet length in the denominator.  Therefore, a longer bullet means a lower 
stability factor or smaller (faster, tighter) twist.  Note that m is in the numerator.  For a given bullet 
length, boattail or hollow point bullets are lighter, as are bronze bullets.  Therefore, they are less 
stable or need a tighter twist.

Our rule for t2 (eq A) implicitly contains the bullet's density in the bullet weight term, so 
applies to cast lead bullets, jacketed bullets, bronze bullets, other solid core bullets, etc. without 
modification.  However, the constant 30 only applies at M=2.5 (2800 ft/sec) and standard 
temperature and pressure conditions (59 degrees Fahrenheit, 750 mm Hg, and 78% humidity.)

If we want a safe twist for a bullet of a given length and weight, what is a safe gyroscopic 
stability factor that takes into account non-standard atmospheric conditions and velocities?

Recommendations for safe stability factors at standard conditions run from 1.3 to 2.0 
[H62,H65,H83,D88].  Military practice is 1.5 to 2.0 [McC99].  These values help compensate for 
dynamic instability, which increases the minimum required gyroscopic stability factor above 1.0 
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[McC99].  W. C. Davis, Jr. [D88] stated that in his experience larger stability factors, even up to 
3.5, don't seem to have bad effects on accuracy, and that "overstability is a myth."  Therefore, let's 
start with s=1.75.  However, low temperatures, like Duluth in the winter, significantly increase air 
densities and thus decrease s, because air density is implicit in the denominators of eq A-C. 

To automatically account for low temperatures, we recommend using s=2.0 as the "safe s" 
for preliminary calculations of twist.

What about velocity effects on t and s?  The overturning moment, implicit in the 
denominators of eq A-C, is the only velocity-dependent term.  A VERY crude approximation to 
correct for its velocity dependence is to multiply the calculated s by the 1/3 root of (v/2800) and 
calculated t by the 1/6 root of (v/2800), where v is the velocity in ft/sec.  Below the velocity of 
sound (1120 ft/sec, M=1.0), we use the velocity of sound value.  This correction means stability 
factors or twists are smaller below 2800 ft/sec and higher above.  This calculation requires a hand 
calculator with a yx key.  If we write a correction factor fv as

( ) 3/12800vfv = (E)

then 

( ) 3/1
28002800 2800vsfss vv == (below 1120 ft/sec, use value for 1120) (F)

( ) 6/1
28002800 2800vtftt vv == (below 1120 ft/sec, use value for 1120) (G)

Corrections for temperature and pressure are based on the Perfect Gas Law, and can be 
combined into a factor fTP, where
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where ρ std is the air density at standard conditions, FT the measured Fahrenheit temperature, CT the 
measured Celsius (centigrade) temperature, and PT the measured atmospheric pressure.  This 
correction multiplies the calculated s and t2, and its square root multiplies t itself.

Finally there is a general estimate of the effect of altitude on air density, when actual 
measurements of T and P are not available.  If h is the altitude in ft, then the correction factor fh that 
multiplies s and t2 is
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These correction factors fv, fTP, and fh don't change t when calculating s using eq A, and don't 
change s when calculating t using eq B or C. 

These results are obtained by the analysis in Section IV.

First, let's turn to some tests and examples of these formulas.
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III.  Sample Calculations

The following examples show how well the Rule works and how to answer the questions 
about twist and stability raised in the Introduction.

A.  Comparison with Experiment at 2800 ft/sec (M=2.5)

Case 1.  What is the twist for a given stability factor for the 168 gr. Sierra International 
Bullet [McC88,99]?  For this case, m=168 gr., d=0.308", l=3.98 calibers, and the measured s=1.80 
at 2800 ft/sec.  Then putting these numbers into eq A, we get =+= )]1(/[30 232 lldsmt  30× 168/

[1.80× 0.3083× 3.98× (1+3.982)] = 1429.8.  Therefore 8.1429=t =37.813 calibers per turn, and the 
calculated twist in inches per turn is T=td=37.813× 0.308=11.65".  The actual twist was 12" per 
turn, for an error of only 3%.

Case 2.  What is the twist for a given stability factor for the 5 caliber Army Navy Spinner 
Rocket made of Dural [B73]?  Dural is an aluminum alloy, whose density is 2.8 compared to 10.9 
for jacketed bullets.  For this case, after converting to our units, m=1037 gr., d=0.7874", l=5.0 
calibers, and the measured s=2.59.  The calculated t2=30× 1037/[2.59× 0.78743× 5× (1+52)] = 
189.27, so 27.189=t =13.76 calibers per turn.  The actual twist was 14 calibers, for an error of 
only 2%.

B.  Analyzing the Dunham's Bay Case.

In a benchrest match at Dunham's Bay, NY in February 1988, Dr. Richard Maretzo had 
serious yawing (elongated holes) and unexpectedly wild groups with his 70 gr., 6 mm boat tail 
bullets using a gun with a 14"twist.  The weather was very cold, -10 degrees Fahrenheit.  Shorter, 
70 gr. flat based bullets were not affected.  Several letters about this incident in Precision Shooting 
(July, 1988) agreed that the increased air density from the cold weather had reduced the stability 
factor to the point of instability.  The issue was beautifully analyzed in detail by ballistician Bill 
Davis, Jr. [D88], who had gotten a 70 gr., 6 mm bullet and measured its dimensions on a 
comparator.  He then used a computer program based on one by Bob McCoy of BRL, and showed 
that the bullet was indeed unstable at –10 degrees F at the muzzle velocity of 3350 ft/sec.  He didn't 
give the length of the flat base bullets he used for comparison, so we can't compare our Rule for that 
case.

From Bill Davis' measurements, m=70 gr., d=0.243", bullet length was 0.83" or 
l=0.83/0.243=3.4156 calibers.

What do our formulas tell us about this case, considering the various questions raised in the 
Introduction.

First, what is a safe twist at 2800 ft/sec and standard conditions?  Substituting our safe 
stability factor of s=2 and the bullet quantities into eq A gives t=41.13 calibers and 
T=41.13× 0.243=9.994", or a 10" twist.

Second, what is the safe twist at 3350 ft/sec and standard conditions, using our safe stability 
factor of s=2?  For this we calculate fv from eq E; fv=(3350/2800)1/3 = 1.19641/3 = 1.0616.  Then 
T3350=T2800fv

1/2=9.994× 1.06161/2= 9.994× 1.030=10.30" at 3350 ft/sec and standard conditions.  This 
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is still about a 10" twist, and shows that increasing velocity doesn't make all that much increase in 
stability.

Third, what is the stability factor in a 14" twist barrel at 3350 ft/sec and standard 
conditions?  From eq D, s14=ssafe× (10.30/14)2=2× 0.73562=2× 0.5413=1.083.  (Bill Davis got 1.16.) 
This stability factor is too low to be really safe even at 59 degrees F.

Fourth, what is the stability factor in a 14" twist barrel at 3350 ft/sec, standard pressure,  
but at -10 F?  For this, we calculate fTP from eq H:  fTP = (460-10)/(519)=0.8671.  Then s14(-10) = 
1.083× 0.8671 = 0.939.  (Davis got 0.999.)  But this is less than 1.0, so the bullet is unstable at –10 
F with a 14" twist!

Fifth, would this bullet be stable in a 13" twist at –10 F?  We again calculate the new s from 
eq D.  s13(-10) = s14(-10)(14/13)2 = 0.939× 1.160 = 1.089.  Yes, the bullet is stable, but barely so at –10 
F.  (Davis got 1.16.)

Sixth, how about a 12" twist at –10 F?  Again using eq D, we have s12(-10) = s13(-10)× (13/12)2 

= 1.089× 1.174 = 1.278.  This is at the very low end of design stability at –10 F.  (Davis got 1.36.)
Finally, what are the stability factors at standard conditions and 3350 ft/sec for the 12" and 

13" twists.  Eq D gives s12(59) =1.473 and s13(59) = 1.256. (Davis got 1.58 and 1.34, respectively.)  The 
12" twist with s=1.473 is at the low end of the usual design considerations, and the 13" twist with 
s=1.256 is borderline.

The upshot is that our calculations are close to Bill Davis' more elaborate ones, but 
consistently about 7% lower than his.  Therefore, our stability estimates are more conservative. 
However, we reach exactly the same conclusions that he did; the Dunham Bay boat tail bullets were 
unstable at –10 F.

IV.  Where Does Our Rule Come From?

Our Rule is based on correlating experimental data for moments of inertia, length, moment 
coefficients, and known twist and stability factor data.  Here is how we got it.

The gyroscopic stability factor s at the muzzle is given by the formula [McC99] (see 
Technical Notes below)

B
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Cdt
s

Mair

2

52
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αρ
π= (1)

where s is the stability factor at the muzzle (dimensionless), ρ air the density of air  (lower case 
Greek rho), t the twist in calibers/turn, d the bullet diameter in inches, CMα  the overturning 
(pitching) moment coefficient (dimensionless), A the axial moment of inertia (units of 
weight× length2), and B the transverse moment of inertia (units of weight× length2).  Note that A, B, 
ρ air, and d must be in compatible units for s to be dimensionless.

The general equation for s is eq 1 multiplied by v0
2/ v2, which gets larger as the bullet flies 

down range.  However, s is also proportional to the spin rate, which gets smaller but much more 
slowly in comparison.  Therefore s and the stability get larger going down range.  Consequently, the 
stability factor at the muzzle is its lowest value and thus determines the necessary twist.

We analyzed 39 bullets from various BRL reports (mostly from [B73]), and found that we 
can approximately correlate the moments of inertia in the following dimensionless form (see 
Technical Notes):
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We have also obtained a very approximate formula for CMα  at M=2.5 (2800 ft/sec) using 
data from the same sources:

( ) ( ) lllcgcpCC NM 57.04.06.085.2 ≅−≅−= αα (4)

where cp is the center of pressure and cg is the center of gravity, both measured from the bullet's 
base.  CNα  is the "normal force" coefficient.

Suppose we use the units grains for m, gr./in.3 for the density of air, and inches for d, then 
the Army Standard Metro air density (0.075126 lb/ft3) becomes 0.304330 gr./in.3.  Then we get an 
equation for s by substitution of eq 3 and 4 in eq 1
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and in terms of twist
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Notice that the density of the bullet doesn't appear here (as it does in the general Greenhill 
Rule), because it is contained in the moment of inertia approximation and is implicit in m.

The improved success of this Rule is partly because it is based on correlating modern 
experimental data.  We also note that there are no shape factors included in our rule, whereas the 
moments of inertia, bullet weight, center of gravity, and overturning moment coefficient all depend 
on shape as well as length.  Fortunately, their shape effects seem to partially cancel each other for 
cast, bronze, and solid core bullets.  In particular, there is no clear difference between flat base and 
boat tail bullets.  This makes the l in calibers the most important factor, as it is in the Greenhill 
Rule.

If m is in grams and d in cm (mm/10), the 30 in eq 7 is replaced by 30× 252.9=7587, where 
252.9 is a conversion factor between English and metric density units.

V.  Effects of Velocity (Mach Number), Temperature, and Pressure

What about velocity effects on s and t?

The overturning moment coefficient CMα  is implicit in the denominator of eq A-C.  Our 
correlation of it is based on a Mach number M= 2.5, or v=2800 ft/sec at standard conditions. 
However, CMα  increases as the velocity decreases and approaches the velocity of sound.  This 
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increase in CMα  depends on the shape of the bullet.  Near the sound velocity (1120 ft/sec), it can be 
1.25 to 1.55 times larger than its value at M=2.5 (2800 ft/sec.)  This means stability factors and 
twists are smaller below 2800 ft/sec and higher above.  A VERY crude approximation for the 
velocity effect on the overturning moment is to multiply the calculated s by the 1/3 root of v/2800 
and t by the 1/6 root of v/2800, where v is the velocity in ft/sec.  Below the velocity of sound, use 
the velocity of sound value.  This gives a correction factor 

( ) 3/12800vfv = (7)

for s and t2 and the square root of fv for t itself.

What about atmospheric temperature and pressure effects on s and t?

The Army Standard Metro conditions are temperature=59 deg Fahrenheit, pressure=750 mm 
Hg, and humidity=78%.  The humidity effect is small enough to be ignored.  At higher altitudes, the 
pressure and consequently the air density is less, so the bullet will be more stable and the formula is 
safer.  At high temperatures, the air density is less so stability is increased.  However, at low 
temperatures, the increased air density effect can be significant.

In recommending a safe stability factor above, we increased s from 1.75 to 2.0, based on the 
belief that no sane shooter will go out at temperatures lower than 15 or 20 below.  However, the 
complete air density correction fTP from standard conditions to actual atmospheric temperature and 
pressure comes from the Perfect Gas Law, and is
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where ρ std is the air density at standard conditions, P the pressure, FT the Fahrenheit temperature, 
and CT the Celsius (centigrade) temperature.  The individual ( ) are "absolute temperatures."  Since 
the standard air density is in the denominator of eq 1, the correction factor multiplies the calculated 
s and t2 and its square root multiplies t itself.

A general estimate of the effect of altitude on air density, using "conventional" T and P, is 
useful when actual measurements of T and P are not available.  For Army Standard Metro, it is 
[McC99]
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where h is the altitude in ft.  The correction factor fh that multiplies s and t2 is
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These correction factors fv, fTP, and fh do not change t when calculating s, or s when 
calculating t.
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By the way, the ICAO standard atmosphere is 59 deg F (15 deg Celsius), 760 mm Hg, and 
humidity 0%.  The density of this atmosphere is only 2% larger than that of Army Standard Metro, 
small enough to be ignored in view of the approximations of eq 5. 

VI.  Technical Notes

a.  Eq 1 is obtainable from many sources, in particular from eq 10.85 on page 230 in Robert 
L. McCoy's "Modern Exterior Ballistics" [McC99], after changing to our notation, relating the spin 
to twist, and correcting misprints.  (Unfortunately there are many publisher's misprints.)  In his eq 
10.85, the p in the denominator is actually the Greek letter ρ  representing the air density, and his 
spin p in the numerator is related to the twist by ( )dtvp /2π=  (found on p192 below eq 9.31).

b.  H. P. Hitchcock [H52] notes that good approximations for .30-.50 caliber ball and armor 
piercing bullets are: A/md2 = ka

2=0.115; B/md2 = kt
2 is proportional to (1+0.944l2); and cg = 0.4l 

from the base.  We note that kt
2 for a cylinder is proportional to (1.25+l2), and for Greenhill's 

"football" shape to (1+l2).

c.  ( )cgcpCC NM −= αα  with cp and cg measured from the base.  The empirical correction 

of the "slender body" approximation gives CNα =2.85 (a good value at M=2.5=2800 ft/sec) and gives 
cp as the bullet volume in calibers3.  This in turn is about 0.6l (a good value at M=2.5.)  Therefore, 
with cg=0.4l, ( ) lllCM 57.04.06.085.2 =−=α .

Good shooting!

Donald G. Miller, 2862 Waverley Way, Livermore, CA  94551
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